
Save Lab Space and Cost: Controlling
Serial and Ethernet Test Instruments with
a Raspberry Pi 3 Model B
––
APPLICATION NOTE

http://www.tek.com
http://www.tek.com/keithley

Part of the cost of establishing and operating a test lab is

the cost of the computer resources necessary to automate

routines and procedures. Whether it is a single or multiple

station setup, quality test equipment represents a better

investment than a computer. Although it could be argued that

the cost of a computer is minimal compared to that of the

test equipment, the few hundred dollars spent on a computer

could be better applied to adding features or options to the

test equipment. Therefore, leveraging a low-cost alternative

with a sizable online user community and numerous

examples is worth considering.

Raspberry Pi is a credit card-sized, single-board computer

that features an ARM-compatible integrated CPU and an on-

chip GPU. The Pi’s small size, low power requirements, and

adaptability make it very popular for a variety of applications,

including robotics, data logging, and other electronics

projects. The recommended distribution for the Raspberry

Pi is known as Raspbian, a Debian-based Linux operating

system. The newest edition of Raspbian—Stretch—comes

equipped with various software development tools and

supports many programming languages, including Python.

The Python programming language is known for its

readability and ease of use. This document details the best

methods for remote instrumentation and data acquisition

using the Raspberry Pi 3 Model B.

This document describes a general setup of the Raspberry Pi

and the installation of recommended software tools for test

automation. Example code for the Keithley DAQ6510 Data

Acquisition and Logging Multimeter System demonstrates

the implementation of PyVISA and how an operator can

communicate with lab test tools. An example illustrates pure

sockets-based communication (for Ethernet/LAN-enabled

instrumentation) that minimizes the number of software

plugins necessary to get operational.

Raspberry Pi Setup and Configuration
Using the Raspberry Pi requires an HDMI-compatible monitor

or another monitor type with an HDMI adapter cable, a micro

USB power supply that can supply 2 A at 5 V, and a standard

keyboard and mouse. To turn the Pi on, simply connect it to

power and it will boot automatically.

Installing Raspbian

The Raspberry Pi Foundation recommends using a class 4

8 GB micro SD card, ideally with NOOBS (New Out of Box

Software) preinstalled. NOOBS is the operating system

installation manager for the Raspberry Pi.

If not using a pre-configured SD card for the Raspberry

Pi, the first step is to acquire a blank micro SD card with a

minimum of 8 GB of storage space. For SD cards 8 GB or

larger, the card should be reformatted as FAT. If the chosen

SD card has more than 32 GB of storage space (for example,

64 GB or more), it should be reformatted to FAT32.

Once the card is formatted, install NOOBS onto it. The

NOOBS zip file can be downloaded from the official
Raspberry Pi website. Once the file has been downloaded,

copy the contents to the root of the blank formatted SD

card. Insert the micro SD into the slot on the bottom of the

Raspberry Pi.

Initial Boot

The first time the Pi is powered on, select Raspbian (full

desktop version) under the Install tab. The full version

of NOOBS has Raspbian included, so it can be directly

installed from the SD card without an Internet connection.

If the operating system image on the card is outdated and a

new version has been released, the option to download the

latest version becomes available once the Raspberry Pi is

connected to the internet.

To establish an Internet connection, simply connect the Pi to

the network via the LAN port or use the Raspberry Pi 3 Model

B’s onboard WiFi capabilities to connect to an available

wireless network through the WiFi tab in the NOOBS installer

window. An Internet connection is necessary to download

and install updates and new Python packages from the

command terminal.

2 | WWW.TEK.COM/KEITHLEY

Save Lab Space and Cost: Controlling Serial and Ethernet Test Instruments
with a Raspberry Pi 3 Model B

APPLICATION NOTE

https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
http://www.tek.com/Keithley

Once Raspbian is installed, the desktop will appear, which

offers access to the applications menu in the top-left corner.

The applications menu has all the included programming

IDEs, the Raspberry Pi configuration options, and

shutdown options.

The Raspbian installation can be updated to install only the

most recent version of the current Raspbian image on the

Pi. It will not upgrade the operating system to a different

Raspbian image.

To apply updates, open the command terminal and input:

sudo apt-get update
sudo apt-get dist-upgrade

Then, reboot the Raspberry Pi.

For more information about setup, see the official Raspberry

Pi Foundation documentation page.

VISA
The Raspberry Pi can communicate with instruments

through VISA via Python using the PyVISA library. PyVISA is

a frontend to VISA, providing a Python API that can connect

to multiple backends. The default backend is the traditional

National Instruments NI-VISA library. However, NI-VISA is not

compatible with Raspbian on the Raspberry Pi. Instead, the

PyVISA-py backend is used. PyVISA-py is a purely Python

implementation of the VISA library that supports the most

common attributes and methods.

Python2

To install PyVISA on the raspberry pi, open the Raspberry Pi

command prompt and input:

pip install –U pyvisa

To install PyVISA-py on the raspberry pi, open the Raspberry

Pi command prompt and input:

pip install pyvisa-py

Python3

To install PyVISA on the raspberry pi, open the Raspberry Pi

command prompt and input:

pip3 install –U pyvisa

To install PyVISA-py on the raspberry pi, open the Raspberry

Pi command prompt and input:

pip3 install pyvisa-py

The PyVISA-py backend can be selected when instantiating

the VISA Resource Manager by passing the ‘@py’ argument.

The ‘@py’ argument allows PyVISA to bypass the default

National Instruments backend.

The following is a basic example that details how to open,

close, and verify a PyVISA TCP/IP resource connection

in Python3 by querying for the instrument’s ID string and

printing it to the console window. Simply connect the Pi and

the instrument with an Ethernet cable via the LAN ports.

TCPIP Example
import visa	 #Use pyvisa library

rm = visa.ResourceManager('@py')	 #Use the pyvisa-py backend
address = "TCPIP0::169.254.153.137::inst0::INSTR"	 #Keithley DAQ6510 IP address TCP/IP string
inst = rm.open_resource(address)

inst.write("*RST")	 #Sends the reset command to the instrument
print(inst.query("*IDN?"))	 #Prints the instrument ID string to the
	 command line

inst.close()	 #Close the connection
rm.close()

WWW.TEK.COM/KEITHLEY | 3

Save Lab Space and Cost: Controlling Serial and Ethernet Test Instruments with
a Raspberry Pi 3 Model B

APPLICATION NOTE

http://www.raspberrypi.org/documentation
http://www.tek.com/Keithley

The advantage to using PyVISA is that it can facilitate various

interfacing methods for communication other than Ethernet,

including RS-232 via PySerial. Due to the nature of the

PyVISA-py backend, additional Python libraries must be

installed to use resource types other than TCP/IP.

Python2

To install PySerial on the raspberry pi, open the Raspberry Pi

command prompt and input:

python -m pip install pyserial

To check what resource types are available and whether

the libraries they depend on have been installed, open the

command terminal and input:

python -m visa info

Python3

To install PySerial on the raspberry pi, open the Raspberry Pi

command prompt and input:

python3 -m pip install pyserial

To check what resource types are available and whether

the libraries they depend on have been installed, open the

command terminal and input:

python3 -m visa info

To establish serial communication between the Raspberry

Pi and an instrument, simply use a USB-to-serial converter

cable with the USB end plugged into the Pi and the serial pins

connected to the instrument’s RS-232 port. For best results,

set the instrument’s baud rate to 9600.

Python2

To identify available serial ports or adapters that are

connected to the Pi, open the Raspberry Pi command prompt

and input:

python -m serial.tools.list_ports

Python3

To identify available serial ports or adapters that are

connected to the Pi, open the Raspberry Pi command prompt

and input:

python3 -m serial.tools.list_ports

The following example details how to open, close, and

execute a long-term temperature scan with a PyVISA Serial

RS-232 resource connection in Python3. The instrument’s

ID string and the scan data is printed to the console before

being sent to a .csv file.

4 | WWW.TEK.COM/KEITHLEY

Save Lab Space and Cost: Controlling Serial and Ethernet Test Instruments
with a Raspberry Pi 3 Model B

APPLICATION NOTE

http://www.tek.com/Keithley

RS-232 Example
import visa	 #Use pyvisa library
import time

rm = visa.ResourceManager('@py')	 #Use the pyvisa-py backend
address = "ASRL/dev/ttyUSB0::INSTR"	 #Raspberry Pi USB Serial Port ASRL String
inst = rm.open_resource(address)
inst.write("*RST")
print(inst.query("*IDN?"))

inst.write("FORM:DATA ASCII")	 #Format scan data into ascii

inst.write("FUNC 'TEMP', (@101, 102)")	 #Measure Temperature
inst.write("TEMP:TRAN FRTD, (@101, 102)")	 #Set transducer to four wire RTD
inst.write("TEMP:RTD:FOUR PT3916, (@101, 102)")	 #Set the RTD type to PT3916
inst.write("TEMP:OCOM ON, (@101, 102)")	 #Turn on offset compensation
inst.write("TEMP:ODET ON, (@101, 102)")	 #Turn on open lead detector

inst.write("ROUT:SCAN:COUN:SCAN 25")	 #Set scan count to 25
inst.write("ROUT:SCAN:INT 300")	 #Execute a scan every 5 minutes
inst.write("ROUT:SCAN:CRE (@101, 102)")	 #Scan channels 101 and 102
inst.write("INIT")	 #Initiate the scan

monitor for scan completion…

time.sleep(5.0)
trigState = inst.query(':TRIG:STAT?')	 # query the state of the scan activity which is either
	 # "running" when the measurements are being made
	 # or "waiting" when the interval (delay) between scans
	 # is active

while("RUNNING" in trigState) | ("WAITING" in trigState):
 print("Running....")
 time.sleep(5.0)
 trigState = inst.query(':TRIG:STAT?')

data = inst.query('TRAC:DATA? 1, 50, "defbuffer1", CHAN, READ, UNIT')
print(data)	 #Print readings to console

inst.close()	 #Close the connection

#send data to csv file
with open("/home/pi/4Wire_RTD_Temperature.csv", "a") as log:
 log.write(data)

rm.close()

For more information, see the official PyVISA, PyVISA-py, and PySerial documentation.

WWW.TEK.COM/KEITHLEY | 5

Save Lab Space and Cost: Controlling Serial and Ethernet Test Instruments with
a Raspberry Pi 3 Model B

APPLICATION NOTE

https://pyvisa.readthedocs.io/en/stable/index.html
https://pyvisa-py.readthedocs.io/en/latest/
https://pyserial.readthedocs.io/en/latest/pyserial.html
http://www.tek.com/Keithley

Ethernet Sockets
Communication through Sockets programming on the

Raspberry Pi is possible via the socket module in the

Python standard library. Socket programming allows two

devices on the same network to communicate. For remote

instrumentation, the instrument acts as a server and listens,

while the Pi is programmed as a client that reaches out to

form a connection.

Sockets programming is the most straightforward method

to communicate with instruments with the Raspberry Pi

because it does not require the user to install additional

Python packages and is facilitated by a simple Ethernet

network connection.

The following example details how to open, close, and

execute an AC parameters scan with a socket connection

in Python3. The instrument’s ID string and the scan data is

printed to the console, before being sent to a .csv file.

Example
import socket
import time

TCP_IP = "169.254.153.137"	 #Instrument IP Address
TCP_PORT = 5025

def instsend(s, command):
 command += "\n"
 s.send(command.encode())
 return

def instrecv(s):
 return s.recv(1024).decode()

def instquery(s, command):
 instsend(s, command)
 return instrecv(s)

s = socket.socket()
s.connect((TCP_IP, TCP_PORT))	 #Pi will be client to server instrument
instsend(s, "*RST")
print(instquery(s, "*IDN?"))

instsend(s, "FORM:DATA ASCII")	 #Format scan data into ascii

instsend(s, "FUNC 'VOLT:AC', (@101)")	 #Measure AC Volts on channel 1
instsend(s, "FUNC 'FREQ', (@102)")	 #Measure Frequency on channel 2
instsend(s, "FUNC 'PER', (@103)")	 #Measure Period on channel 3
instsend(s, "FUNC 'CURR:AC', (@121)")	 #Measure AC Current on channel 21

instsend(s, "ROUT:SCAN:COUN:SCAN 10")	 #Set scan count to 10
instsend(s, "ROUT:SCAN:CRE (@101:103, 121)")	 #Scan channels 101-103 and 121
instsend(s, "INIT")	 #Initiate the scan

time.sleep(0.5)
trigState = instquery(s, ':TRIG:STAT?')	 # query the state of the scan activity which is either
	 # "running" when the measurements are being made
	 # or "waiting" when the interval (delay) between scans
	 # is active
while("RUNNING" in trigState) | ("WAITING" in trigState):
 print("Running....")
 time.sleep(5.0)
 trigState = instquery(s, ':TRIG:STAT?')

data = instquery(s, 'TRAC:DATA? 1, 40, "defbuffer1", CHAN, READ, UNIT')
print(data)	 #Print readings to console
s.close()	 #Close the connection

with open("/home/pi/AC_Parameters.csv", "a") as log:	 #send data to csv file
 log.write(data)

6 | WWW.TEK.COM/KEITHLEY

Save Lab Space and Cost: Controlling Serial and Ethernet Test Instruments
with a Raspberry Pi 3 Model B

APPLICATION NOTE

http://www.tek.com/Keithley

Find more valuable resources at TEK.COM
Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.

090618 SBG 1KW-61463-0

Contact Information:
 Australia* 1 800 709 465

Austria 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not

accessible, call: +41 52 675 3777
Rev. 02.2018

http://www.tek.com
http://www.tek.com
http://www.tek.com/keithley

